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ABSTRACT

An acoustic instability of a shock precursor driven by the pressure gradient of accelerated particles is studied in
the nonlinear regime. The nonlinearity steepens unstable acoustic waves and turns them into shocks. The shocks
form a “shocktrain” but they may merge into each other. Traveling wave solutions are obtained analytically in two
different cases. In the first case, only acoustic instability is included and the characteristic scale (distance between
the shocks) is limited only by the system size (while shocks merge). In the second case, the instability develops
out of cyclotron unstable seed magnetohydrodynamic (MHD) waves. The spatial distance between the MHD wave
packets sets the scale of the acoustic shocktrain. The internal structure of the individual shocks is presumably
determined by the ion skin depth ¢/w,,; and by the relaxation length of slightly superthermal particle distributions
near these shocks. The shocks are assumed to be arbitrarily thin compared with the distance between them which
is ensured by a small viscous term. Both types of solutions are dynamically verified by numerical calculations.
The hydromagnetic flow in the shock precursor emerging from the acoustic instability is crucial for two recently
suggested phenomena in diffusive shock acceleration. One phenomenon is the enhancement of the acceleration
rate well above its standard (Bohm) value due to the narrowing of the shock precursor. The second phenomenon is
the amplification of the long-scale magnetic field by an inverse cascade of Alfvén waves generated by accelerated
particles and scattered in k-space on the acoustic perturbations.
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1. INTRODUCTION

The concept of diffusive particle acceleration by strong
shocks is based on a few simple ideas: (1) the energy source
for acceleration is the mechanical shock energy; (2) particles
tap this energy by alternately coupling to the downstream and
upstream media (thus being virtually reflected by these con-
verging media); (3) although the coupling process is essentially
magnetic, the required magnetic field may remain dynamically
unimportant. In other words, magnetic perturbations do not need
to consume much of the shock energy to (elastically) scatter par-
ticles in the local fluid frame. Of course, the acceleration time is
set by the strength of the magnetic field. Should the field be am-
plified in course of acceleration, the latter will proceed faster as
the particles scatter more rapidly. However, if time is available,
a mere disturbance of the ambient field (e.g., moderate Alfvén
waves generated by the streaming particles) would suffice for
the particles to consume much of the mechanical shock energy
leaving the magnetic field to act only as a means of confining
particles to the shock.

The above picture has the appeal of relative simplicity: (1)
ambient magnetic field energy is negligible compared to the
mechanical shock energy (magnetic Mach number M, > 1)
and remains such; (2) the available shock energy is distributed
between only two main recipients: the energetic particles and
the thermal plasma. However, even within this minimalistic
model, the energy distribution (i.e., the acceleration efficiency)
critically depends on a number of uncertain parameters. They
include the injection rate of thermal particles as a function of the
shock obliquity, the turbulent plasma heating rate in the cosmic
ray (CR) shock precursor, and the transport characteristics
of accelerated particles in this precursor. The acceleration
efficiency not only depends sharply on these quantities, but it
is even a multivalued function of them (Malkov 1997a, 1997b;
Blasi et al. 2005) so that bifurcations occur.
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Regardless of the difficulties of acceleration theory, the mag-
netic field amplification in young supernova remnants (SNRs)
is likely to be an observational fact that needs to be addressed
(Vink & Laming 2003; Berezhko & V6lk 2004; Uchiyama et al.
2007; Aharonian et al. 2008). Most of the current field amplifi-
cation models rely on the efficient particle (CRs) acceleration in
that the amplification starts only when a significant fraction of
shock energy is deposited into accelerated particles (Bell 2004;
Vladimirov et al. 2006; Zirakashvili et al. 2008. Then, they drive
one or a few available instabilities to generate a stronger field.
Therefore, determining the acceleration efficiency within the
above mentioned weak field approximation is a necessary step
in understanding both the acceleration process and the subse-
quent magnetic field generation as its possible by-product and
facilitator.

In this paper we consider an acoustic (the so-called Drury)
instability (Drury & Falle 1986; Zank et al. 1990; Kang et al.
1992). The instability is driven by the pressure gradient of
accelerated particles. Acoustic turbulence normally degenerates
into shocks, so that there will be many (weaker) shocks ahead of
the main flow discontinuity (subshock). Shocks will certainly
alter the entire acceleration process. First, by even passively
compressing the magnetic field (both ambient and turbulent)
and thus creating magnetic patterns, the shocks modify particle
transport. The latter becomes primarily nondiffusive, at least
for particles of sufficiently high energy. Such change of particle
transport and confinement dramatically changes the outcome
of acceleration, i.e., the maximum particle energy, acceleration
efficiency, and spectral index, as was demonstrated recently by
these authors (Malkov & Diamond 2006). Second, the emerging
acoustic flow scatters the Alfvén waves generated by accelerated
particles in wavenumber space leading, in particular, to an
inverse cascade (Diamond & Malkov 2007). Third, the heating
rate of the thermal plasma also changes. Shock heating is more
efficient than an oft assumed adiabatic heating or even turbulent
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heating by the Alfvén waves, particularly if the mechanical
and CR energy dominate magnetic energy in the acceleration
process. Finally, thermal particles are injected into acceleration
at the newly created shocks in addition to the conventional
subshock injection.

Now it follows that the shock waves upstream of the subshock
are both a reflection and engine of acceleration. In the papers
cited above the scattering field has been only prescribed as an
ensemble of shock waves (shocktrain). The goal of this paper
is to exactly determine the hydromagnetic flow structure in the
shock precursor which is needed to calculate the acceleration
parameters discussed above.

Shocktrains are frequently observed in situ upstream of
cometary, interplanetary and even the Earth’s bow shock. They
are thought to be driven by unstable particle distributions, such
as pick-up ions, ions reflected off the main shock, or those
leaking from the downstream side of the shock. Note that in CR
shock precursors, the CR pressure gradient is a powerful source
of free energy to drive shocktrains.

The linear theory of acoustic and magnetoacoustic instabili-
ties driven by the CR pressure gradient is well studied both in
hydrodynamic and kinetic regimes (Drury & Falle 1986; Zank
etal. 1990; Kang et al. 1992). The subsequent nonlinear steepen-
ing of these waves into shocks was also observed in simulations
in the cited papers. The purpose of this paper is to develop a non-
linear theory describing the unstable wave growth, steepening,
saturation, and interaction (merging) of the shocks to determine
their strengths and the spatial pattern they form. As we stated,
these are important characteristics of the magnetic turbulence
of the CR precursor that are critical for both the acceleration
theory (Malkov & Diamond 2006) and for the theory of mag-
netic field generation and spectral transfer (Diamond & Malkov
2007). In the latter theory, the MHD turbulence cascades to
longer scales by scattering off the acoustic disturbances. This
process was suggested to enhance acceleration and at the same
time to avoid a rapid collisionless damping of the turbulent
magnetic field, discussed earlier by Pohl et al. (2005). Finally,
once these shocks can inject fresh particles into the acceleration
throughout the precursor efficiently—as opposed to the com-
munity paradigm of the injection at the subshock—the models
for diffusive particle acceleration should be modified. There-
fore, the acoustic precursor instability has a strong impact on
the acceleration efficiency, acceleration rate, spectral slope, and
the maximum energy.

The plan of the paper is as follows. In the next section we
derive a nonlinear evolution equation that describes generation
of acoustic waves by Drury’s instability and its subsequent satu-
ration by nonlinear wave steepening that results in a shocktrain.
In Section 3, we obtain traveling wave solutions of this equation.
In Section 4, a solution is obtained for the case when Alfvén
waves, driven by the cyclotron instability of the CRs, provide a
seed perturbation for the Drury’s instability. Numerical ramifi-
cations of these solutions that concern the shocktrain evolution
and shock coalescence are presented in Section 5. We summa-
rize and discuss the results in Section 6.

2. SHOCK PRECURSOR EQUILIBRIUM AND ITS
STABILITY AGAINST GENERATION OF ACOUSTIC
WAVES

In diffusive shock acceleration theory, the CR-modified shock
precursor is an extended area ahead of a gaseous discontinuity
(the latter is also called the subshock). The accelerated CRs
diffuse into this area against the inflowing plasma, so that only

Vol. 692
Downstream uO(x) Upstream
0 ‘ X
LP Ld
Subshock
-UO— ubshoe grad P | Acoustic waves
-—

Alfven waves
—

1 O e — S

Figure 1. Typical velocity profile uq (x) of a plasma flowing into a modified
shock, shown in the subshock frame. The CR pressure gradient in the shock
precursor drives both Alfvén waves propagating in the upstream direction and
acoustic waves propagating toward the subshock.

the most energetic CRs with momenta p ~ ppax reach its
end, Figure 1. The scale of this region is the largest in the
problem (apart from the shock geometry related scales, such
as the radius of a blast wave, etc.) and can be estimated as
Lgit >~ k (Pmax) /U1, where k is the momentum-dependent
particle diffusivity and U, is the plasma speed far upstream.
Along with Lg¢, we introduce the flow modification length (or
modified shock precursor length) L, >~ «(p,)/U; < Lgj.
Here p, is the particle momentum which makes the maximum
contribution to the CR pressure. The momentum p, can be
equal to pmax (When in a nonlinear regime the spectrum is so
flat that the pressure diverges with p). It is also possible that
P« < Pmax, In Which case the spectrum develops a break at
ps« and continues to pmax With a steeper, pressure converging
slope (Malkov & Diamond 2006). Particles with p > p, do not
modify the flow significantly in the region L, < x < Lg.

The pressure of CRs makes work against the flow and
gradually slows it down within the CR precursor. This occurs
through the generation of MHD waves by the same pressure
gradient of CRs (or equivalently, by their pitch angle anisotropy)
and through the ponderomotive pressure that these waves exert
on the incoming plasma (Achterberg 1981). The ponderomotive
pressure, however, does not need to be as high as the flow
ram pressure to slow down the flow. In fact, the CR pressure
decelerates the flow by entering the total pressure balance and
compensating the plasma current in Ampere’s law allowing thus
even weak magnetic field perturbations to decelerate the flow
(Blandford & Funk 2007). Likewise, the MHD waves that scatter
CRs in course of acceleration do not need to reach an energy
comparable with the CR total energy since the scattering is
elastic in the local wave frame (and the latter is close to the
local fluid frame).

We also anticipate strong heating of the precursor plasma
because of the acoustic turbulence. Therefore, we do not
assume the plasma to be heated adiabatically and treat its
equilibrium temperature as an arbitrary function of coordinate.
The temperature is maintained by the acoustic turbulence.
However, we defer the study of turbulent heating to a future
paper. In this paper, as we stated already, we assume that
the mechanical and CR energy dominate the magnetic and
thermal energy, even though the magnetic field may be amplified
and plasma may be heated significantly due to hydrodynamic
turbulence resulting from the acoustic or other instabilities.
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In the simplest one-dimensional form the equations for the
gas flow read

—+—pu=20 (1)

ou ou 10 9%u
— tu— — 2)
ot dx p 0x 0x2

Here p, u, and P, denote the mass density, velocity and thermal
pressure of the plasma, respectively. As we stated earlier, P,
is considered to be a given function of x. The last term on the
right-hand side (rhs) of Equation (2) represents an anomalous
viscosity due to microinstabilities that are likely to occur in
the regions of strong velocity variations. In particular, these
instabilities can be driven by shock reflected particles as well by
hot particles that leak from downstream. These instabilities have
been extensively studied in regard to collisionless shock physics
(Sagdeev 1979; Kennel et al. 1985; Papadopoulos 1985). To
close the system of Equations (1) and (2), we will determine the
CR pressure P, in Equation (2) from the convection—diffusion
equation for the pitch angle averaged distribution function of
accelerated particles

af af ?f  poudf
Tobu —k(p) o = 3)
dt ox ox 30x dp
Here, the CR pressure is given by
4 p*
Po= T / d 4)
3 ,ﬁ?fp

and the particle momentum p is normalized to mc, where
m is the proton mass. We assume for simplicity that the
particle diffusion coefficient depends only on momentum and
ignore its spatial variations. A few comments are in order
here. First, in a simple but maybe not totally unrealistic case
of Kk (p,x) = k1 (p)k2(x), the x-dependence of x can be
removed by a coordinate transformation. Second, in terms
of the acoustic instability studied further in this paper, the
dependence of x on other variables (such as p; Drury &
Falle 1986) yields a simple factor in a final expression for the
growth rate y o« (1 + dlnk/dln p) which we de facto ignore
and replace by unity. There are no strong arguments for the
case 1 + dlnk/dlnp ~ 0. Moreover, the acoustic turbulence
that results from this instability primarily changes the regime
of particle transport, rendering the transport nondiffusive in
at least the most interesting, high energy region (Malkov &
Diamond 2006). This explains our choice of « as a simple
growing function of momentum. We believe that this is the
only reasonable (but important!) physical assumption to make,
based on our current understanding (or ignorance) of the particle
transport in turbulent shock precursors.

2.1. Weakly Nonlinear Acoustic Waves in a CR Precursor

We start from the standard equilibrium solution of Equations
(1) and (2) in the shock precursor, x > 0 (Figure 1):

po (x)ug (x) = J = const 6))
ot + Py (x) + Pey (x) = const. (6)

Here, the O-indexed variables denote the equilibrium distribu-
tions of the quantities introduced earlier in Equations (1) and
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(2). Since the flow is highly supersonic, the unstable acoustic
waves are convected much faster than they propagate in the local
fluid frame, suggesting the following Lagrangian coordinate:

dé =dx —ug(x)dr. @)

Note that in the new variables &, ¢ the stationary parts of the
velocity and density profiles depend on time. The dependence
is slow compared with the timescale of acoustic perturbations
if kL ,/M, > 1, where k is a typical wavenumber of the sound
waves and M, = ug/c; is the local Mach number of the flow.
Expanding Equations (1) and (2) in small but finite deviations
of the density and velocity from their equilibrium quantities,

p=p—po<Kpo, U=u-—uy< o, (®)

yields the following equations for the perturbations

ap ou 0 _.
Ly po—+ —pii =0, 9
8t+p08§+8$'0u ©)
ou 1 0 _ 1 ) - .
—u+ﬁa—u=%iPw,——<l—£> i(Pg+ )
at 95 py 9§ 0 po/) 08" °
”a% (10)
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Here, we have introduced the average total pressure
Ptot:PgO‘i'PcO: P,
and the oscillating parts of the gas and CR pressure

P, =P, — P,

P.=P.— P.

The gas pressure perturbations can be expressed through the
density perturbations in the usual way (Landau & Lifshitz 1987),

. —1
Pg=c35<1+”’>’2p 5), (11)
0

where y, = 5/3 is the adiabatic gas index. We shall follow a
procedure which is very similar to the standard gas dynamics
derivation of the Burgers equation, except for the extra terms
with the CR pressure. Not surprisingly, we will arrive at the
Burgers equation supplemented with such extra terms. It is
convenient to reduce Equations (9) and (10) by differentiating
first Equation (9) with respect to ¢ and by using then Equation
(10). The following equation results:

9 9 9 9\ 1 9P.9p 92P.
— — G —t—|Jp=—— — +
ot ag ) \ ot o po 0E 9E  0E2

Ve —20%% 9 <2~aﬁ ~8ﬁ)
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9%
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The terms on the lhs describe forward and backward propagating
waves, of which the backward wave, p ~ 0 (§ + c¢,t), is unstable
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due to the first term on the rhs. The role of the second term on
the rhs will be clarified later. Here, we simplify the last equation
assuming the backward propagating (unstably growing) waves
to dominate, which means that

ap ap
— Ny
ot 0&
Using the last relation, Equation (12) can be integrated by &. In

addition, the velocity perturbation # can be expressed through
the density perturbations p from Equation (9) as follows

~ Cs -
U ——p. (13)
Lo

Equation (12) can, in turn, be transformed to the following,
modified Burgers equation

3 0p v+l _dp %5 1 [dP. p AP,

— =y — CPp— — Py = - — .

or g 2p0 Poe M2 T 2c, \og  po 0t
(14)

The lhs of this equation is the familiar Burgers part, whereas
the effect of the CR pressure is on its rhs. The first term in
parentheses is the response of CR to the density fluctuations
of the plasma, p, which we provide in the next subsection.
The second term is actually the Drury’s instability driving term
related to the averaged CR pressure gradient which is considered
here to be a known quantity. Therefore, to close the above
equation, we need to calculate the CR response to the acoustic
fluctuations. This will be done in the next subsection and in the
Appendix.

2.2. CR Response to Acoustic Perturbations

Usually, CRs respond to acoustic perturbations dissipatively
because of their fast diffusion. The response was first calculated
by Ptuskin (1981) within the MHD approach. In Drury’s
instability context the CR response was calculated by a number
of authors starting from Drury & Falle (1986) (see, e.g., Zank
et al. 1993 and references therein). The main guidance from
these works is that the short sound waves decouple from CRs,
so that the latter can be largely ignored in Equation (14)
apart from the destabilizing contribution from their background
gradient. However, given the above assumption about strong
momentum dependence of the CR diffusivity, we need to
confirm this assertion using a kinetic approach. In principle,
such calculations are also available in the literature (see e.g.,
Zank et al. 1993 and a very recent one by Finazzi & Vietri
2008). Unfortunately, they arrived at contradictory conclusions
(even though the assumptions are similar) in that the first paper
claims that CRs can destabilize the acoustic waves (squeezing
instability), whereas the authors of the second paper arrive
at the opposite conclusion (apparently unaware of the first
paper). More importantly, both papers do not consider Drury’s
instability, i.e., the CR background pressure gradient is not
included. Therefore, their results cannot be utilized here directly.

A somewhat superficial examination of the above controversy
suggests that it originates in part from the different choices of
the CR background distribution functions. More importantly,
perhaps, they also treat the transition in the momentum space
between the thermal and energetic particles in different ways.
Therefore, to calculate the CR response, it is best to proceed
from an equilibrium solution of the CR distribution function
in the CR precursor. Such a solution has been found as an
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expansion in 1/k (p) series by Malkov (1997a) specifically
for the case of rapidly increasing « (p). It is critical that k
grows faster than p'/2. In a short wave, adiabatic limit, i.e.,
when kk > c¢;, we can neglect the time derivative term in
Equation (3) (here, we have used an estimate for the frequency
w — kug =~ kcy). It is also convenient to use a flow potential
¢, defined as u = 0¢/dx, instead of u. Thus, instead of
Equaxtion (3) we write

a¢ of ’f
rox WP =

3%¢p d
£_¢_f (15)
309x20ap

One can generate a solution in a series of ¢/k which can be
represented formally as (Malkov 1997a)

(p)
f=fo(p)exp [ﬂmm} . x>0, (16)
3k (p)
where fj is a (so far) arbitrary function of momentum and
_ 81nf0
~ dlnp

is the spectral index. The procedure of summation of the series
in |¢/k| < 1 to yield the sum given by Equation (16) is not
rigorous, which probably explains why the entire approach is
dubbed “semianalytic.” Nevertheless, the result, i.e., the solution
in Equation (16), satisfies Equation (15) exactly (for arbitrary
¢/k) as long as the flow profile ¢ (x) is specified properly.
Of course, the latter must be specified to satisfy the pressure
balance, given by Equation (6). In fact the flow profile, initially
chosen to make the solution in Equation (16) an exact solution of
Equation (15), turns out to satisfy the pressure balance condition,
Equation (6). More precisely, Equation (6) is strictly satisfied
within the shock precursor, i.e., for x < L,, My > 1, and
for pmax/pinj > 1, where pjy; is the injection momentum.
Therefore, the solution given by Equation (16) is an equilibrium
solution of the system given by Equations (1)—(4). This solution,
however, becomes somewhat inaccurate at the boundary of
the shock precursor, ie., for x 2 L,. On the other hand,
82¢/ dx2 — 0, so that u (x) =~ const there, and the solution
in Equation (6) is obvious. It can be obtained from Equation
(16) by a formal choice of g = 3. Within the precursor, g turns
out to be close to ¢ = 3%, so that the correction to be made
while continuing the internal solution to the periphery of the
CR precursor is not very significant. Of course, to construct
a regular (uniformly valid) asymptotic expansion for the CR
shock structure with a self-consistent particle spectrum, this
correction is required. It can be made by matching the internal
solution described above to a perturbative, outer solution (for
P.(x) /pu* < 1), applicable in the area x > L, found earlier
by Blandford (1980). At the same time, both the internal solution
for f, Equation (16), and a corresponding self-consistent flow
profile, u( (x), exponentially approach their proper asymptotic
limits as x — oo (f —0 and uy — —U;) without any
matching with an outer solution. Therefore, the matching would
not change the internal solution for f or for ug (x) found in
Malkov (1997a) because the corrections to these quantities at
the edge of the precursor are exponentially small. This explains
why the agreement with the numerical solution is almost perfect
(Moskalenko et al. 2007), despite the minor shortcomings of the
asymptotic expansion described above.

Therefore, for the purposes of the present paper the internal
solution alone is sufficient. Moreover, the acoustic instability
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develops in the area of high CR pressure, i.e., for x < L,. The
background flow stationarity and a sufficiently steep « (p) de-
pendence are thus the only restrictions imposed. Therefore, we
can apply this solution also to a flow that is perturbed by sound
waves, provided that the condition kk (p) > ¢, is met. Clearly,
this is a very mild restriction on the valid range of momenta p

since the condition k£ > L;I = U/« (p,) must be valid in any
event, so that it is sufficient to require k (p) /k (p,) 2 M, ! For
Bohm diffusion the last inequality simplifies to p/p. = M.

~

In fact, this condition is automatically fulfilled throughout the
CR precursor except for low-energy particles that are close to
the subshock. Indeed, let us substitute

¢ (x) = o (x) + ¢ (x,1) (17)

into Equation (16) with ¢y being the steady background flow
potential (uy = d¢/dx) and ¢ its perturbation. Thus,

f=Fo(p,x)exp [Li] . (18)
3k (p)
The unperturbed part of the distribution function
q
Fo= fo(p)exp [ ®o (X)] (19)
3k (p)

cuts off exponentially for particle momenta p < ppin, Where
Pmin (x) can be determined as k (Pmin) = ¢ (Pmin) o (x) /3. For
Bohm diffusion, the smallest gyroradius that particles can have
for a given x is 7y (Pmin) = qxUp/c. Therefore, the stationarity
requirement can be easily fulfilled for all particle momenta p,
aslongas x/L, 2 U;/UyM;.

Now that the particle distribution is available, we can calculate
the CR response in Equation (14) as follows:

P. = 4_7Tmc2/C>O —p4dp Fo( x){ex [_q <]3] - 1}
‘3 0 ,/1+p20p’ P 3k (p) '
(20)

Note that, according to the background solution F, the integra-
tion limits here should be p;,; and ppax instead of 0 and oo since
the contribution of Fy to P, diverges with ppax (Fo & p77?, as
p — oo) and must be cut off. The perturbation of P, however,
i.e., ISC, converges even without imposing a cut off on Fy at
the upper limit because of the condition « (p) > Cp'/? (where
C = const) and the factor in the braces in Equation (20). At
the lower integration limit, the pressure integral also cuts off
by itself, as we discussed above. Therefore, we extended the
integration to the entire momentum space.
Let us write the particle diffusivity « for Bohm diffusion as

P2

pe/1+ p?

where p, > 1 is some fiducial momentum which we take to
be equal to the maximum of the background particle partial
pressure contribution and «k, = k (p,). Assuming q§ /K (Pmin) <
1, from Equation (20) we obtain the linear response of the CR
particles to the acoustic perturbations that are characterized by
the flow potential ¢:

Kk (p) = K« 21

~ 4w mc?p, - [ g mc?p, ~
o~ P ¢/ ap*Fo(p.x)dp = L2522y (1),
9 Ky 0 9 k.
(22)
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where we introduced the CR number density

o0
ne = 4w / p*Fo(p,x)dp (23)
0

and where g is the value of g (p) averaged over the particle
spectrum Fo(p). In a strongly nonlinear acceleration regime
the index g (p) continuously decreases with p, starting from
q =3ry/(rs — 1) > 4 at p = pyy; (with r; being the subshock
strength), then the index approaches the value ¢ = 4 in the
momentum range pi,j < p < 1, then it decreases even more,
tog = 3% for 1 < p < pmax. Finally, the index g ends up at
the cut off py.x with its value ¢ = 3% (Malkov 1997a). The
latter feature results from the assumption about an abrupt cut
off. The above ¢ (p) behavior perfectly reproduces the results
of Monte Carlo simulations (Ellison et al. 2000) in the entire
Dinj < P < Pmax Tange, when they are made under the same
assumptions (see Moskalenko et al. 2007 for the comparison of
analytic and numerical results).

Using Equations (13) and (22) we can rewrite Equation (14)
as follows
05 0p vt 0F b

P e oe2 VP (24)

where the acoustic instability growth rate is

o
ar  “9E 2po

1 9P, _ imczp* ne(x)

- - (25)
2ppcs & 18 ki po

The first term on the rhs represents the instability growth rate

(positive for the chosen negative direction of wave propagation)

found by Drury & Falle (1986). The second term is the

background CR response to the acoustic waves which is always

stabilizing. One can rewrite the second term as

P,

K+ 00

Vdamp = - (26)

e~

Apart from the factor g/3 ~ 7/6 instead of y,. &~ 4/3 (adiabatic
index of the CR gas), the damping term also coincides with that
found by Drury & Falle (1986). This minor difference is due to
the two-fluid treatment in the cited paper, for which n. = 0 but
P. > 0. Therefore, the transition to P, « p.n. > 0 (implying
an infinite p,) depends on the CR spectrum which the two-fluid
model cannot handle, and which is reflected in the factor g (see
Malkov & Drury 2001 for a general discussion of the kinetic
versus two-fluid treatment of CRs). Of course, one may replace
q in Equation (22) by —dln Fy/dIn p instead of —dln fy/dInp,
integrate by parts, and reach thus a formal agreement between
the two approaches. In both cases, however, Ygamp ~ v/M; L v
and can be neglected.

3. TRAVELING WAVE SOLUTION DRIVEN BY
ACOUSTIC INSTABILITY

It is best to start the analysis of Equation (24) from the
simplest case of a periodic traveling wave solution. The reasons
for that are the following. First, traveling wave solutions are,
in general, very strong attractors of an externally or unstably
driven Burgers equation (Malkov et al. 1995). In the CR shock
precursor, the highest energy particles, upon diffusing to the
outermost part of it, excitt MHD waves via the cyclotron
instability. The typical wavelength of these waves is of the
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order of the particle Larmor radius and they should also contain
a compressible component of the same length (Kotelnikov
et al. 1991). Even though the resonance condition allows an
excitation of shorter waves by particles with the same energy
but moving at larger pitch angles, a widely accepted resonance
sharpening procedure (Skilling 1975) suggests that the dominant
wavenumber is kg ~ rg(p,). Now that Drury’s instability
develops while these waves are convected through the precursor,
we can consider them as seed waves for the instability. Note
that the shorter seed waves in the spectrum can be ignored also
because of a fast short wave generation by steepening of the
longest waves via the strong quadratic nonlinearity in Equation
(24). In addition, shocks emerged out of the short scales merge
quickly or are absorbed by stronger shocks which originate
from longer scales. However, the effect of the width of the
initial spectrum plays an important part in the dynamics of the
unstably driven Burgers equation. The dynamics will be studied
in more detail in Sections 3 and 4.

Turning to the traveling wave solution, it is convenient to
rewrite Equation (24) in the following form (after transforming
to the system moving at the speed c;, i.e., after introducing a
new coordinate { = & + ¢gt)

ap . 0p . 3%p
—+P—=V,0+Ma—§2- (27)

Here, we have normalized the density perturbations by introduc-
ing p = (yg + 1) ¢sp/2po. We shall look for a periodic traveling
wave solution of the form p = p (¢ — Ct) that also satisfies the
condition (,6) = 0, where (-) denotes a period averaged quantity.
The simplest family of such solutions can be obtained in the
case C = 0, which will be numerically confirmed in Section 5
to be an attractor of the complete time-dependent system given
by Equation (27). For this simplest case we obtain the following
ordinary differential equation for p:

L0p L %p
Pog VP Hga (28)

Integrating this equation yields the following relation between
pand 0p/0¢

6> 3P 19p
P p_ In (1 - ——'0> = E = const. (29)
y 8¢

2u  9¢

The last result describes a family of traveling wave solutions
labeled by the amplitude parameter E, Figure 2. This parameter
is related to the wave amplitude as follows:

ﬁmax = _iamin =V 2uE.

In the limit of small 6 the system is identical to a linear oscillator.
In this case from Equation (29) we have

1 (0p\> P>
—(22) + 2 _E. (30)
2y \ 0¢ 21

The last relation is equivalent to the energy integral of a
linear oscillator of mass 1/y and of elastic constant 1/u. The
coordinate of the oscillator is p and the role of time is played
by ¢. The oscillator frequency (in our case the spatial period) is
independent of its energy. In this limit, the solution for 6 clearly
describes a linear acoustic wave that propagates at the sound
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smooth part dp

\
N

shock

Figure 2. Phase portrait for Equation (29). Several trajectories are shown
for different values of the constant E. The horizontal portions of the orbits
correspond to the smooth part of the solution, where 35/9¢ ~ y, while the
bottom part of each orbit relates to the shock transition.

speed c;. The viscous damping is compensated in this case by
the instability (innermost contour in Figure 2). In a general,
nonlinear case we obtain the following relation between the
wave period and its amplitude, i.e., the nonlinear dispersion
relation

L:7§ d_ﬁz\/Eyﬁ oy
(05/06) N2 L = VE+d+7I(—9/7)
G31)

where we have used ¥ = 90/9¢ as an integration variable.
As usual, the integral is to be taken between the roots of the
radical along the closed trajectory of the “oscillator.” The above
traveling wave solution of the unstable Burgers equation is
exact, but it will be useful to have simplified versions of the
solution in the two limiting cases discussed above. The small
amplitude solution that corresponds to the condition ¢ <« y
is characterized by the first integral already given by Equation
(30) and by the amplitude-independent wave period

L:lﬁyéd—w:zﬂ\/z (32)
yV2J JE—vy2/2y Y

Of course, this result can be obtained easily by retaining only the
instability and the viscous terms in Equation (27). An opposite,
strongly nonlinear regime is more interesting to the present
study. In this case the maximum value of i approaches y and
we obtain from Equation (31) the following relation between
the wave amplitude, /2 E and the wave period L:

I— ﬂf dd
N2y J VE/y+1+0 —exp(D)

0 A~

I dd 4 2 Pmax
:2 - _— = —/ E2: . 33
V2y/5vE/y+l9 y Ve y

where we have used the substitution ¥ = In (1 — vr/y). The last
relation can also be easily obtained directly from Equation (27)
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by equilibrating the nonlinearity and the driving terms so that
the solution becomes piecewise linear:

p=vx, —L/2<x<L/2 (modL). (34)

Here p runs between —pm. and pPma. At the points x =
(n+1/2) L (with integral n) shocks are to be placed, where
0 returns from Ppax t0 — Pmax. The spatial structure of the shock
transition can be obtained from the exact formula given by
Equation (29) upon neglecting the logarithm term:
~2 A A2

~ 8_,0 — @' (35)
2u  0¢ 21

A conventional shock transition then follows from the last
formula:

A
IomaX

~ ~ L
0 = — Pmax tanh [ﬂ ({ — E)il , (modL). (36)

A smooth connection of this shock profile with the linear portion
of the solution above can be obtained by matched asymptotic
expansion or multiscale methods. This type of solution is known
as a shocktrain solution which occurs in many driven nonlinear
evolution equations. Shocktrains form when the driven waves
grow and steepen into shocks. The overall solution consists
then of extended regions where the nonlinearity is balanced
by the driver. These regions are interspersed by shocks, where
the nonlinearity is balanced by the dissipation (and dispersion,
if present). These types of solutions are shown to be very
persistent; they can be periodic or even spatially chaotic. They
can be stationary or evolve in time depending on the parameters
(see Malkov 1996 and references therein for details).

4. TRAVELING WAVE SOLUTION DRIVEN BY
ACOUSTIC AND CYCLOTRON INSTABILITIES

As we noted earlier, MHD waves are driven throughout
the shock precursor by a slightly anisotropic CR distribution.
Even though these waves may be created incompressible (since
Alfvén waves propagating along the field line grow at the
highest rate), they can efficiently convert into magnetoacoustic,
i.e., compressible, waves (e.g., Kotelnikov et al. 1991). The
compressible perturbations undergo the acoustic instability and
we include them into the Burgers equation, Equation (27), as a
driver:

9ap . 0p R 3%p
i - —u— = —ut). 37
Py +,08§ Yo a2 Q¢ —t) (37)

Here Q is the source of the density perturbations originated
by the cyclotron instability. Since Equation (37) is written in a
reference frame that moves toward the subshock at speed c,, and
the Alfvén waves propagate in the local fluid frame away from
the subshock at speed vy, the speed at which the source moves
is v = ¢; + v4. This speed enters the argument of the driver Q.
It is now convenient to transform to the driver frame, so that the
last equation can be rewritten as

U AU *U

¥+U§—V(U+v)—ua—y2=Q(y), (38)

where we have denoted U = p—v = p—c,—vaand y = ¢ —ut.
Note that the speed v = ¢, + v4 is the mean value of U.
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To connect solutions of this equation with the numerical
studies of Equations (27) and (38) in the next section, we
assume that an acoustic perturbation source Q is a superposition
of a few linear acoustic modes resulting from conversion of
Alfvén, or slightly oblique magnetosonic waves. These waves
are excited by the cyclotron instability of accelerated particles.
We select a few modes with wavenumbers &, ~ k4 separated
by k,+1 — k, = Ak, where k4 is a typical wavenumber in the
wave packet. It can be estimated as k4 ~ 1/ry, where ry is a
typical Larmor radius of CRs that drive the cyclotron instability.
The resulting wave field is therefore a periodic sequence of
packets separated in space by L = 2m/Ak which will be the
total period of the solution. The spatial size of each packet
is about Ly, = 2m/NmoaAk, where Npoq is the total number
of modes in the packet. Note that nearby the subshock the
spectrum of excited Alfvén waves is broad, as particles with
all momenta from pjnj t0 pmax are present, while the spectrum is
narrower at the periphery of the precursor, since only the highest
energy particles can reach it. In addition, the width of a packet
depends on the wave conversion mechanisms. Notwithstanding
these uncertainties, we take a moderate number of acoustic
mode perturbations in Equation (38) though this number is
large enough to separate the periodic sequence of packets by
a distance which is long enough to approximate Q ~ 0 in the
space between the packets. Therefore, we can represent Q as
0 (y/€) where € is a small parameter, characterizing the width
of each packet in the shocktrain, compared with the distance
between the packets, i.e., € = 1/Npog and Q(y > 1) = 0.
Now we can construct a solution within each period of the
driver, similar to the solution obtained in the last section for
the case of Q = 0. Here, however, the period of the solution is
prescribed by the period of Q.

Let us denote z = y/e, V = U/./€ and look for a traveling
wave solution of Equation (38) (which is simply a steady state
solution in the driver’s reference frame). The equation takes the
following form:

w 9%V

Sraa 9

A%

VE = Q@) +y eV +v//e)+
Considering here € and p as small parameters and neglecting
the viscous term in the region of packet localization (z ~ 1) we
obtain the following expansion of V in the parameter /€:

V=Vo+ VT*/E / Vo(@) +v/+/eldz, (40)
0 0

where the zeroth-order solution Vj (z) is given by the following
expression:

Vo= / 0@ dz. @1
0

We have assumed that Q (0) = 0, Q’(0) > 0, and the branch
of the square root in the last equation is chosen such that
Vo(=2) =—Vo(2), z— 0.

The solution given by Equation (40) is valid in the region of
packet localization and we need to match this solution with
a solution that describes the shock structure. To obtain an
expansion for the latter solution we rescale the variables in

Equation (38) as follows: w = U/./uy, n = /Y /iy, so that
the equation for w takes the following form:

w
w— =w+ — + B, 42)
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where

Q)+

RO 7 = i

In Equation (42) the instability, viscosity, and nonlinearity are
all of the same order, while the driver Q is evaluated at y > 1 for
small u, i.e., Q is neglected according to the above assumption.
The constant B in Equation (42) can be treated as a small
constant (compared with w) since within the shock transition
U > U = v. Therefore, we look for the solution of Equation
(42) in the following form:

w=wy+Bw;+---. 43)

In fact, for the purpose of determination of the shock coordinate
within the driver period, it is sufficient to obtain only wy in
Equation (43). The equation for wy is the same (apart from
rescaling) as Equation (28):

3w0 + 8214)()
Wo—— = W
0 37} 0 3772

(44)

Thus, we can obtain the exact integral of this equation using
Equation (29):

w_é_M_IHQ_M):%. 45)

To match the solution of this equation with the solution valid in
the region of the driver, Equation (40), it is sufficient to take a
limit in which the logarithmic term is large:

P )
ﬂgl_exp Wo ~ Wmax . (46)
an 2

This representation of the integral, given by Equation (45), is
valid to the left from a maximum of wg, which is identified with
the integration constant wy,x. The shock structure is the same
as that considered in the previous section. The specific part of
this solution that needs to be matched to the solution given by
Equation (40) can be represented as

In {_1 + exp [wmax (wmax - LU())]}.

47)
To match this solution with the solution in Equation (40) we
take the limit wyax (Wmax — Wo) > 1,

n (UJ()) -1 (wmax) = -

max

Wo ~ N+ Wmax — Nmax

with Nmax = 1 (Wnax)- Returning to the original variables U and
v, we obtain
Uy — Ymax)+ Una

see Figure 3. The matching procedure leads to the following
simple relation between the constant Vj,, the maximum value

of U = Umax = /MY Wmax ~U (ysh) and Ysh X/ /'L/Vnmax:

Unmax — YYsh = \/EVOOO' (48)

To relate the shocktrain parameters Up,,x and yg,, the following
consideration is useful. First, recall that a period averaged
U = —v. Next, we have chosen the packet localization so that
0 (0) = 0 and we can assume for simplicity that the driver is
antisymmetric, Q (—y) = —Q(y). Note that this condition is
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Figure 3. Schematic of matching procedure of the shock and wave packet
portions of the solution of Equation (39). One period (of length L) of the
solution is shown. The matching is performed in an overlapping region between
the region of the wave packet localization, Equation (40), and shock solution,
Equation (46). Both asymptotic expressions are valid in this portion of the entire
wave profile which changes approximately linearly with coordinate there.

not really a restricting one, since it can be relaxed by repeating
the above expansion of the solution for y < 0. The requirement
U = —v, however, yields

= -V - \/EVOCXN

where we have neglected small terms ~ v%. The last equation
reflects the asymmetry of the shocktrain U(y) with respect to the
point y = 0, i.e., ysn # L /2. This asymmetry is caused by the
fact that U = —v # 0. Therefore, the full solution acquires the
constant v. The Vyo-term is obviously due to the wave packet.
The most important aspect of this solution, however, is that its
period is determined by the period of the driver. In a real physical
situation the sequence of the wave packets is not strictly periodic
and we can only specify a characteristic length scale L instead
of the period. At the same time this scale will prescribe the
shock spacing, i.e., the minimum wavenumber. This part of the
turbulent spectrum is very important for particle acceleration
since it is responsible for the confinement of the highest energy
particles.

Y (ysn — L/2)

5. NUMERICAL SHOCKTRAIN SOLUTIONS

The purpose of this section is twofold. First, we demonstrate
that the traveling wave solutions obtained in the last two sections
indeed attract time-dependent solutions of the evolution equa-
tions given by Equations (27) and (38), i.e., by the unforced
and forced Burgers equations, respectively. Second, we investi-
gate the dynamics of the system as it approaches the attractors.
The dynamics includes the unstable wave growth out of a seed
perturbation, the shock formation, and shock merging.

We integrate Equation (27) in time. As we emphasized earlier,
the initial density perturbation is caused by the cyclotron insta-
bility of the CRs in the precursor. However, almost independent
of the initial conditions, the undriven system approaches a time
asymptotic solution that is exactly the traveling wave solution
given by Equation (29). Its period equals the integration box
size unless special initial conditions are chosen, such as those
lacking all the odd harmonics. Then, the period is naturally a
half of the box size. The evolution of the system goes invariably
through the coalescence of smaller shocks into larger ones. If the
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Figure 4. Stack plot of a wave profile evolving in time. The initial profile is a
wave packet formed by a superposition of a few modes which model the result of
the cyclotron instability of the MHD waves with a compressible component. This
initial condition is subjected to the evolution Equation (27) with the following
parameters: 1 = 0.002, y = 0.4. The final wave profile is 27 -periodic and
steady (it is shown in a moving reference frame for clarity). One strong shock
per period with a linear behavior outside of the shock transition is a strong
and stable attractor of this system, exactly coinciding with the analytic solution
described in Section 4.

initial amplitude is large enough to make the nonlinearity strong,
the shocks arise immediately from any given density profile by
steepening. Otherwise, the initial profile growth linearly with
the timescale ~ 1/y and then breaks into shocks which merge
later in the both cases.

A typical example of such development is shown in Figure 4.
Initially, three relatively weak shocks per box are formed with
nearly linear waves between them. Then, the shocks move
toward each other (in fact a stronger, faster shock overtakes
and swallows a weaker and slower one, as usual in Burgers
turbulence). In the mean time, the small amplitude waves in-
between also steepen somewhat, but their steepening is clearly
limited by viscosity. They too are absorbed by stronger shocks.
Finally, when only two strong shocks remain after the first big
merging, the strongest shock absorbs the weaker one and only
one shock per period remains. The overall solution is exactly the
piecewise linear “sawtooth” solution given by Equations (34)
and (36).

Let us turn now to the situation in which the Drury’s
instability is accompanied by the cyclotron instability. This
case is described by Equation (38). As we noted, the cyclotron
instability is assumed to operate in a finite wave band with
characteristic wavelength equal to the typical Larmor radius of
energetic particles. As an initial condition, we take a wave packet
formed by a few unstable harmonics. Having arisen from the
cyclotron instability, they are converted by the wave refraction
(Kotelnikov et al. 1991) into a wave packet of the density
perturbations. Since this process should continue while the
Drury’s instability develops, the evolution equation in Equation
(38) is supplemented by the driving term Q.

The initial condition consists of two linear wave packets
per periodic box, so that it takes a few inverse growth rates
1/y before the waves in the packets start to steepen and form
shocks, Figure 5. Again, relatively weak initial shocks merge to
form stronger shocks. However, contrary to the previous case
of Q = 0, this process does not continue until a single shock
with the largest amplitude possible remains. Instead, after two
strong shocks are formed by merging of the weak shocks on the
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Figure 5. Same as in Figure 4 except the system is driven by three harmonics with
the wavenumbers k = 15, 17, 19. Without the action of the Drury’s instability
this driver leads to the formation of two wave packets per period. The stack plot
shows the dynamics of the Drury’s instability and the final state (see text).

left flanks of the wave packets, the somewhat steepened right
flanks actually separate the shocks and prevent them from further
merging. This time asymptotic state of the system, Figure 5, was
obtained analytically in the preceding section.

6. DISCUSSION AND CONCLUSIONS

Many discussions of the SNR—CR link have been focused
on the difficulties of the DSA mechanism to reach the ener-
gies inferred from the observations. Still in the wake of the
pessimistic Lagage & Cesarsky (1983) estimates, various au-
thors have attempted to demonstrate the ability of an SNR to
accelerate particles to the knee (~ 10'> eV) energy and beyond.
The most radical suggestion was due to Bell & Lucek (2001)
and Bell (2004). It invokes the free energy of already acceler-
ated CRs to drive MHD waves in the CR shock precursor, to
levels way above what then was a community paradigm level,
i.e., 6 B ~ By. The latter level is indeed negligible compared to
the available shock mechanical energy (and thus CR energy, if
acceleration is efficient). The Bell & Lucek idea is appealing
in that it seems to have the potential to extend the maximum
energy of particles, accelerated by a young SN (particularly if
exploded in a progenitor wind) up to the CR ankle (~ 10'® eV).
However, the instability saturation mechanism (Bell 2004) con-
sidered is the increase in magnetic tension, and so imposes only
an upper bound on the maximum amplitude. Other standard
saturation mechanisms likely to yield lower amplitudes, such
as particle trapping, transit time or nonlinear Landau damping
and wave steepening (considered in this paper), were not ad-
dressed. An equally important problem is that the (fire-hose)
instability, studied by Bell (2004), has its maximum growth rate
at wavelengths three orders of magnitude shorter than the small-
est gyroradius of the CRs that drive this instability. Therefore,
these waves are useless for the confinement of the highest en-
ergy particles, unless the field amplification is so strong that
the particle gyroradius becomes smaller than the wavelength.
In the latter case, however, the assumptions under which the
instability growth rate is derived would be violated. The impact
of the strongly unstable short waves on the slowly growing long
waves, that are potentially useful for particle confinement, is
unknown. Note that other detailed DSA related studies of the
same instability for different sets of parameters but with similar
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results can be found in Achterberg (1983) and Shapiro et al.
(1998).

An important difference between the fire-hose or ion-
cyclotron kinetic instabilities and the acoustic (Drury) insta-
bility considered in this paper is that the growth rate of the
acoustic instability, Equation (25), is almost independent of the
wavenumber (see, however, Equation (A6)). The acoustic in-
stability is more robust in that it is hydrodynamic in nature
and cannot be stabilized by kinetic (e.g., quasilinear) effects
such as the isotropization of particle distribution or particle
trapping (Achterberg & Blandford 1986). Moreover, the mag-
netic shocktrain structures efficiently trap and mirror energetic
particles (Malkov & Diamond 2006). Usually, these processes
quickly isotropize the energetic particle distribution, thus mod-
ifying and suppressing the growth rates of the cyclotron and
fire-hose unstable Alfvén waves. It is also important to note that
shock merging in the Burgers model naturally generates longer
scales which is not only crucial for the confinement of the high-
est energy particles but also prevents the magnetic energy being
damped rapidly (Diamond & Malkov 2007).

It follows that the mechanism of transforming turbulent mag-
netic energy toward long scales comes in two flavors. First,
shocktrains generated after the onset of the Drury’s instabil-
ity provide an efficient scattering environment for MHD waves
generated by the ion-cyclotron unstable accelerated particles
(Diamond & Malkov 2007). The scattering of these waves
in wavenumber generates longer scales (along with shorter
ones). The specification of the scattering environment for fur-
ther application to the inverse cascade theory developed in the
above paper was one of the main goals of the present paper.
Second, shocks coalesce within a shocktrain and generate longer
scales and stronger shocks in the CR shock precursor. The latter
process is generic to the Burgers turbulence both in a decay
(undriven) regime (Gurbatov et al. 1992) and in the case of a
stochastic (Chekhlov & Yakhot 1995) or deterministic driver
(Malkov et al. 1995).

The situation considered in this paper is different from the
conventional Burgers turbulence in two ways. First, the Drury’s
instability generates all harmonics at the same rate so that there
is no preferred scale and the shocks merge till a system-wide
scale (e.g., the longest harmonic in a simulation) is reached.
In the context of the CR shock precursor, of course, the shock
merging process is always limited by the precursor crossing
time, . = L,/ug. Nevertheless, a number of relatively strong
shocks (about 5-10 on average) may be present in the shock
precursor at any moment of time while they are continuously
formed and merge. Under these circumstances, the accelera-
tion will likely proceed at a faster than Bohm rate (Malkov
& Diamond 2006). Second, if the ion-cyclotron instability of
accelerated particles also disturbs the plasma density (as dis-
cussed in Section 4), a driving term appears on the rhs of the
Burgers equation. The result is different from the previous case
in that the shock merging process is limited by the longest
distance between the shocks prescribed by the period of the
driver, i.e., by the distance between the wave packets gener-
ated by the cyclotron instability. In fact, this process is favor-
able for acceleration, since scales that are significantly longer
than the proton gyroradius (beat-wave length of the cyclotron
instability rather than the proton gyroradius) are created. There-
fore, almost independent of the cyclotron instability, the acous-
tic instability creates a more efficient scattering environment
which substantially improves particle confinement and enhances
particle acceleration, as was shown in Malkov & Diamond
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(2006). This process will be studied in more detail in a future
publication.

The final note to make is about limitations of a formally hy-
drodynamic (nonmagnetic) treatment of the acoustic instability
pursued in this paper. This approach was chosen primarily for
simplicity and clarity. The Burgers equation can be easily gen-
eralized to one of its “magnetic” versions, the most generic of
which is the so-called derivative nonlinear Schrodinger equa-
tion, DNLS. However, as long as magnetic field is weak, as
already discussed in Section 1, its dynamical role can be ig-
nored and the Burgers model is sufficient to adequately describe
the emerging scattering environment that is responsible for con-
finement and acceleration of energetic particles.

Support by NASA under grants NNG 04GK96G and NNX
07AG83G and by the Department of Energy, grant no. DE-
FGO02-04ER54738, is gratefully acknowledged.

APPENDIX

Here, we perform a standard linear stability analysis of the
system given by Equations (1)-(4). The difference between
the dispersion relation obtained below and those obtained
in the preceding studies (Zank et al. 1993; Finazzi & Vietri
2008) is in the choice of the equilibrium CR distribution Fj in
general, as discussed in Section 2.2, and in the inclusion of the
CR pressure gradient in particular. This gradient alone produces
unstable solutions, not found in the above papers. Conversely,
the “squeezing” instability found by Zank et al. (1993) is not
present here because of a different treatment of the connection
region between the CR and thermal plasma. As we mentioned,
there is a distinctive gap between the two distributions ahead
of the subshock. Therefore, the CR distribution function tends
to zero also at lower momenta. Note that the treatment of the
squeezing instability in Zank et al. (1993) does not specifically
address the modified CR shock precursor.

We start from a standard WKB Ansatz (though a local
approximation is sufficient for kL, > 1) applied to Equations

(1) and (2):
i = Z ukeikxfiwt
k

and similar expansions of 156, 0, and ISg will be used. A simple
algebra leads to the following linear dispersion equation:

ik - k P.
(a)’ - iu()x)z — kch — ;ZO_OPCX = (a)’ — iuoy) E u‘:.

(AT)

Here index x stands for the x-derivatives of the background
variables ug and P,. We have retained only leading in M! <« 1
terms of this kind and neglected the viscous damping. The CR
response on the rhs can be calculated by linearizing Equation
(3). To simplify the formalism, we restrict our treatment to that
(largest) part of the CR precursor where pni, > 1 (the lower
momentum cut off is above p ~ mc in dimensional variables,
see Section 2.2). Then, using Equation (3) for P we obtain

P 4 2/00 P3F0(pax)
kmc —_—
uy 9 o (0 +iKk?)?
16w? + 19iw'kk? — 6k 2k* d
(' +iKk?)?

X |:4a)' +3ikk> — %uox

(A2)
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Here F) is given by Equation (19) which allowed us to extend
the integration limits to (0, 00), essentially on the same grounds
as those discussed in the paragraph following Equation (20).
However, since @’ # 0 here, an additional restriction on p, (x)
should be imposed to avoid the necessity of cutting the integral

from above:
a)/

k2
This condition can be translated into the following one, kL, >
M; 1 which should of course be always fulfilled, given the lo-
cal treatment of the dispersion equation. The latter condition
is a softened version of the adiabaticity condition kk (p) > ¢
discussed in Sec.(2.2). For verification purposes, we first con-
sider an opposite case of very long waves, when the condi-
tion in Equation (A3) is not met. The spectrum must be cut
from above or becomes converging by itself due to a change
of the confinement regime as we discussed earlier. To be con-
sistent, we should drop the ug, and P., terms in Equations
(A1) and (A2) for such long waves, assuming that the back-
ground plasma is homogeneous. Then, Equation (A2) can be
written as
Py 4k -

P.. (A4)

LK (pe)- (A3)

Uy 30

Clearly, the factor 4/3 should be identified with y,, the

CR adiabatic index, since the contribution to the CR

pressure comes from ultrarelativistic particles. Then, from

Equation (A1) we obtain the well known result found by Ptuskin
(1981): _

W =k (cl + vePe/po) (AS)

In this paper we are interested in an opposite case, characterized

by Equation (A3). Assuming in addition that the acceleration is
efficient, at least to the extent that

P. 1
> —
pu? M
we can discard ug, in Equation (A1):

’

ik - dr 1
w? — kch — =P, =—ao —mck?
£o 9  po
foo P Fo(p,x)
X —_—
0

@ T ieP [40' +3ikk*1dp.

Expanding the integrand in small '/« k? we obtain the follow-

ing dispersion equation

k2 k _
(1 - k-;’) 0? — K =SB, —iQd, (A6)
Lo

ACOUSTIC INSTABILITY IN A CR SHOCK PRECURSOR 1581

where we denoted

2

ne ¢ 2 Q
—Psr kg = .
70T g gl

3ng K
Here (-) denotes the momentum average, and n. (x) is the CR
number density ahead of the subshock.

Q=
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